將一塊直角三角形木板ABO置于平面直角坐標(biāo)系中,已知AB=OB=1,AB⊥OB,點(diǎn)P(12,14)是三角形木板內(nèi)一點(diǎn),現(xiàn)因三角形木板中陰影部分受到損壞,要把損壞部分鉆掉,可用經(jīng)過點(diǎn)P的任一直線MN將三角形木板鉆成△AMN.設(shè)直線MN的斜率為k.
(1)求點(diǎn)M,N的坐標(biāo)(用k表示)及直線MN的斜率k的范圍;
(2)令△AMN的面積為S,試求出S的取值范圍.
P
(
1
2
,
1
4
)
【考點(diǎn)】直線的一般式方程與直線的性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:190引用:4難度:0.4
相似題
-
1.已知O為坐標(biāo)原點(diǎn),傾斜角為
的直線l與x,y軸的正半軸分別相交于點(diǎn)A,B,△AOB的面積為5π6.83
(1)求直線l的方程;
(2)直線,點(diǎn)P在l'上,求|PA|+|PB|的最小值.l′:y=-3x發(fā)布:2024/10/23 12:0:1組卷:130引用:3難度:0.7 -
2.數(shù)學(xué)家歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的外心(三邊中垂線的交點(diǎn))、重心(三邊中線的交點(diǎn))、垂心(三邊高的交點(diǎn))依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( )
發(fā)布:2024/11/12 21:0:2組卷:730引用:10難度:0.5 -
3.數(shù)學(xué)家歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的外心(三邊中垂線的交點(diǎn))、重心(三邊中線的交點(diǎn))、垂心(三邊高的交點(diǎn))依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( ?。?br />注:重心坐標(biāo)公式為橫坐標(biāo):
;縱坐標(biāo):x1+x2+x33y1+y2+y33發(fā)布:2024/10/25 1:0:1組卷:69引用:1難度:0.6
把好題分享給你的好友吧~~