已知雙曲線x29-y2m=1的一個焦點在直線x+y=5上,則雙曲線的漸近線方程為( ?。?/h1>
x
2
9
y
2
m
3 4 | 4 3 | 2 2 3 | 3 2 4 |
【考點】雙曲線的幾何特征.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/1 12:0:8組卷:876引用:7難度:0.5
相似題
-
1.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點,P是它們的公共點,且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( ?。?/h2>4e1e23e12+e22A.1 B.2 C.3 D.4 發(fā)布:2025/1/2 23:30:3組卷:199引用:2難度:0.5 -
2.雙曲線3x2-y2=3的漸近線方程是.
發(fā)布:2024/12/29 10:0:1組卷:49引用:6難度:0.7 -
3.已知雙曲線
的右焦點為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實軸長為( ?。?/h2>3x±y=0A.2 B.1 C. 3D. 23發(fā)布:2025/1/2 19:0:5組卷:135引用:2難度:0.7
把好題分享給你的好友吧~~