試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年天津市津南區(qū)咸水沽一中高三(上)期中數學試卷

發(fā)布:2024/10/24 20:0:2

一、單選題。(共9小題,敏題5分,共45分)

  • 1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},則?U(A∪B)=( ?。?/h2>

    組卷:3914引用:47難度:0.8
  • 2.“|2x-1|≥3”是“
    x
    -
    2
    x
    +
    1
    ≥0”的( ?。?/h2>

    組卷:72難度:0.8
  • 3.函數f(x)=
    xsin
    π
    2
    +
    x
    e
    |
    x
    |
    的圖象大致為( ?。?/h2>

    組卷:79難度:0.7
  • 4.已知
    a
    =
    1
    2
    -
    0
    .
    6
    ,
    b
    =
    lo
    g
    1
    2
    2
    9
    ,
    c
    =
    4
    1
    3
    ,則a,b,c的大小關系是(  )

    組卷:631引用:7難度:0.8
  • 菁優(yōu)網5.某市為了解全市12000名高一學生的體能素質情況,在全校高一學生中隨機抽去了1000名學生進行體能測試,并將1000名的體能測試成績整理成如下頻率分布直方圖.根據此頻率分布直方圖,下列結論中正確的是( ?。?/h2>

    組卷:470引用:3難度:0.6
  • 6.設Sn是數列{an}的前n項和,已知a1=1且an+1=2Sn+1,則a4=( ?。?/h2>

    組卷:288引用:2難度:0.6

三、解答題。(共5小題,共75分。解答應寫出文字說明、證明過程成液算步驟》

  • 19.已知{an}為等差數列,{bn}為正項等比數列,{an}的前n項和為Sn,a1=1,
    S
    4
    4
    -
    S
    3
    3
    =
    1
    ,b1(a2-a1)=1,b2+2b3=b1
    (Ⅰ)求數列{an},{bn}的通項公式;
    (Ⅱ)求{(-1)n-1bn}的前n項和的最大值;
    (Ⅲ)設
    c
    n
    =
    a
    2
    n
    +
    1
    b
    n
    +
    1
    2
    ,
    n
    為奇數
    -
    a
    2
    n
    -
    1
    b
    n
    2
    ,
    n
    為偶數
    ,求證:
    2
    n
    k
    =
    1
    c
    k
    24
    n
    N
    *

    組卷:611引用:2難度:0.5
  • 20.已知函數f(x)=[x2+(a-5)x-4a+5]ex(a∈R,e是自然對數的底數,e≈2.718…)
    (Ⅰ)當a=1時,求函數f(x)的極值;
    (Ⅱ)若函數y=f'(x)在區(qū)間[1,2]上單調遞減,求實數a的取值范圍;
    (Ⅲ)若函數g(x)=
    a
    x
    -
    f
    x
    x
    2
    +
    ax
    +
    b
    (b∈Z)有兩個極值點x1,x2(0<x1<x2),且g(x2)<0,求b的最大值.

    組卷:314引用:2難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正