2020-2021學(xué)年吉林省長春八中高一(下)早練數(shù)學(xué)試卷(5.10)
發(fā)布:2024/11/18 3:30:2
一、單選題
-
1.已知向量
=(2λ,-1),m=(2,λ-5)且|n+2m|=|n-2m|,則λ=( ?。?/h2>n組卷:389引用:4難度:0.7 -
2.在△ABC中,C=90°,AC=4,BC=3,點P是AB的中點,則
=( )CB?CP組卷:996引用:14難度:0.7 -
3.已知非零向量
與AB滿足(ACAB|AB|)+AC|AC|=0,且?BC=AB2AB,則△ABC為( ?。?/h2>?CB組卷:290引用:7難度:0.6 -
4.如圖,用向量
表示向量e1,e2為( ?。?/h2>a-b組卷:23引用:1難度:0.8 -
5.△ABC中,角A,B,C的對邊分別是a,b,c,A=30°,a=
,若這個三角形有兩解,則b的范圍是( )3組卷:368引用:2難度:0.8
三、填空題
-
15.南宋數(shù)學(xué)家秦九韶在《數(shù)書九章》中提出“三斜求積術(shù)”,即以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約之,為實;一為從隅,開平方得積可用公式
(其中a,b,c,S為三角形的三邊和面積)表示,在△ABC中,角A,B,C的對邊分別為a,b,c,若a=3,且S=14[c2a2-(c2+a2-b22)2],則△ABC面積的最大值為 .csinCsinB+bcos2C=3c組卷:15引用:2難度:0.6 -
16.棱長為3的正方體內(nèi)有一個棱長為a的正四面體(棱長全相等的三棱錐),若該四面體可以在正方體內(nèi)任意轉(zhuǎn)動,則a的最大值為 .
組卷:275引用:3難度:0.3