2023-2024學(xué)年重慶市九龍坡區(qū)高一(上)開學(xué)數(shù)學(xué)試卷
發(fā)布:2024/8/10 4:0:1
一、選擇題:(本大題10小題,每小題4分,共40分)在每小題的下面,都給出了代號(hào)為A,B,C,D的四個(gè)答案,其中只有一個(gè)是正確的,請(qǐng)將答題卡上題號(hào)右側(cè)正確的答案對(duì)應(yīng)的方框涂黑.
-
1.-3的相反數(shù)是( ?。?/h2>
組卷:14引用:1難度:0.9 -
2.用一個(gè)平面截如圖所示圓柱體,截面的形狀不可能是( ?。?/h2>
組卷:151引用:3難度:0.8 -
3.某反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,3),則此函數(shù)圖象也經(jīng)過(guò)點(diǎn)( )
組卷:12引用:1難度:0.7 -
4.如圖,已知直線a∥b,∠BAC=90°,∠1=40°,則∠2的度數(shù)為( ?。?/h2>
組卷:10引用:1難度:0.8 -
5.估計(jì)
的值應(yīng)在( ?。?/h2>2×(22+5)組卷:65引用:2難度:0.9 -
6.某中學(xué)隨機(jī)地調(diào)查了50名學(xué)生,了解他們一周在校的體育鍛煉時(shí)間,結(jié)果如下表所示:則這50名學(xué)生這一周在校的平均體育鍛煉時(shí)間是( ?。?br />
時(shí)間(小時(shí)) 5 6 7 8 人數(shù) 10 15 20 5 組卷:60引用:3難度:0.8 -
7.如圖都是由三角形按一定規(guī)律組成的,其中第①個(gè)圖形共有3個(gè)頂點(diǎn),第②個(gè)圖形共有6個(gè)頂點(diǎn),第③個(gè)圖形共有10個(gè)頂點(diǎn),…,按此規(guī)律排列下去,第⑤個(gè)圖形頂點(diǎn)的個(gè)數(shù)為( ?。?br />
組卷:25引用:1難度:0.8 -
8.如圖是一個(gè)圓柱形輸水管橫截面的示意圖,陰影部分為有水部分,如果水面AB的寬為8cm,水面最深的地方高度為2cm,則該輸水管的半徑為( ?。?/h2>
組卷:32引用:1難度:0.8
三、解答題:(本大題共8個(gè)小題,第19題8分,第20-26題每題各10分,共78分)解答時(shí)每小題必須給出必要的演算過(guò)程或推理步驟,畫出必要的圖形(包括輔助線),請(qǐng)將解答過(guò)程書寫在答題卡中對(duì)應(yīng)的位置上.
-
25.如圖,在平面直角坐標(biāo)系中,拋物線
與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C,連接BC.y=-12x2+bx+c
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,P是線段BC上方拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥y軸交BC于點(diǎn)E,在OB上取點(diǎn)D,連接CD,其中2OD=BD,過(guò)點(diǎn)E作EF∥x軸交CD于點(diǎn)F,求PE+EF長(zhǎng)度的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,在平面內(nèi),將拋物線沿直線y=x斜向右上平移,當(dāng)平移后的新拋物線經(jīng)過(guò)(0,2)時(shí)停止平移,此時(shí)得到新拋物線.新拋物線與原拋物線交于點(diǎn)N,M為新拋物線上一點(diǎn),點(diǎn)G、H為直線BC上的兩個(gè)動(dòng)點(diǎn),直接寫出所有使得以點(diǎn)G、H、M、N為頂點(diǎn)的四邊形是平行四邊形的點(diǎn)M的坐標(biāo),并把求其中一個(gè)點(diǎn)M的坐標(biāo)的過(guò)程寫出來(lái).y=-12x2+bx+c組卷:13引用:1難度:0.5 -
26.在△ABC中,AB=AC.
(1)如圖1,在△ABC內(nèi)取點(diǎn)D,連接AD,BD,將AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至AE,∠BAC=∠DAE,連接BE,CE,∠BCE=120°,若BE=2BD=4,求BC的長(zhǎng);
(2)如圖2,點(diǎn)D為BC中點(diǎn),點(diǎn)E在CA的延長(zhǎng)線上,連接ED交AB于點(diǎn)F,EF=FD,連接EB并延長(zhǎng)至點(diǎn)G,連接GD,若∠BGD=60°,BF=GD,求證:GD=BG+DF;
(3)如圖3,∠ABC=60°,點(diǎn)D在BC的延長(zhǎng)線上,連接AD,在AD上取點(diǎn)E,AE=2DE,連接BE,若BD=12,當(dāng)CE取最小值時(shí),直接寫出△BED的面積.組卷:19引用:1難度:0.4