2020-2021學(xué)年福建省泉州九中高一(下)期中數(shù)學(xué)試卷
發(fā)布:2024/11/1 6:0:2
一.選擇題(共8小題)
-
1.已知向量
=(2,1),a=10,|a?b+a|=b,則|52|=( ?。?/h2>bA. 5B. 10C.5 D.25 組卷:5237引用:104難度:0.9 -
2.已知復(fù)數(shù)
為純虛數(shù),則a=( ?。?/h2>z=8+ai1-2iA.2 B.4 C.-16 D.-4 組卷:6引用:3難度:0.8 -
3.一個(gè)水平放置的平面圖形的斜二測(cè)直觀圖是一個(gè)底角為45°,腰和上底邊均為1的等腰梯形,則這個(gè)平面圖形的面積是( ?。?/h2>
A. 12+22B. 2+2C. 1+2D. 1+22組卷:355引用:44難度:0.9 -
4.如圖,在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,則四棱錐A1-B1C1CB的體積是( )
A.2 3B.2 10C. 423D.4 π6組卷:313引用:5難度:0.7 -
5.在△ABC中,sin2
=C2,角A,B,C的對(duì)邊分別為a,b,c,則△ABC的形狀為( ?。?/h2>a-b2aA.等邊三角形 B.等腰三角形 C.等腰直角三角形 D.直角三角形 組卷:12引用:1難度:0.8 -
6.長(zhǎng)江某地南北兩岸平行,一艘游船從南岸碼頭A出發(fā)航行到北岸,假設(shè)游船在靜水中的航行速度v1的大小為|v1|=14km/h,水流的速度v2的大小為|v2|=4km/h.設(shè)v1和v2的夾角為θ(0°<θ<180°),北岸的點(diǎn)A′在A的正北方向,游船正好到達(dá)A′處時(shí),cosθ=( )
A. 357B.- 357C. 27D.- 27組卷:12引用:2難度:0.7 -
7.如圖四邊形ABCD為平行四邊形,
,若AE=12AB,DF=12FC,則λ-μ的值為( )AF=λAC+μDEA.1 B. 23C. 12D. 13組卷:1653引用:6難度:0.7
四.解答題(共6小題)
-
21.直四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,點(diǎn)O1、O分別是上下底菱形對(duì)角線的交點(diǎn).
(1)求證:A1O∥平面CB1D1;
(2)求點(diǎn)O到平面CB1D1的距離.組卷:30引用:5難度:0.3 -
22.某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與地面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的光線與平面ABC的部分截面如圖中陰影部分所示,已知∠ABC=
π,∠ACD=23,路寬AD=18米.設(shè)∠BAC=θ(π3π12).≤θ≤π6
(1)求燈柱AB的高h(yuǎn)(用θ表示);
(2)此公司應(yīng)該如何設(shè)置θ的值才能使制造路燈燈柱AB與燈桿BC所用材料的總長(zhǎng)度最?。孔钚≈禐槎嗌??組卷:24引用:1難度:0.6