已知函數(shù)f(x)=12x2-(a+1a)x+lnx,其中a>0.
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處切線的方程;
(2)當(dāng)a≠1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若a∈(0,12),證明對(duì)任意x1,x2∈[12,1](x1≠x2),|f(x1)-f(x2)|x21-x22<12恒成立.
1
2
x
2
-
(
a
+
1
a
)
x
+
lnx
a
∈
(
0
,
1
2
)
1
2
|
f
(
x
1
)
-
f
(
x
2
)
|
x
2
1
-
x
2
2
1
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:237引用:2難度:0.5
相似題
-
1.已知函數(shù)h(x)是函數(shù)y=lnx的反函數(shù),f(x)=
x+1h(x)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=xf(x)+ty′(x)+e-x(t∈R),是否存在實(shí)數(shù)a、b、c∈[0,1],使得g(a)+g(b)<g(c)?若存在,求出t的取值范圍;若不存在,說明理由.發(fā)布:2024/12/6 8:0:2組卷:193引用:1難度:0.1 -
2.函數(shù)
的單調(diào)遞增區(qū)間為( ?。?/h2>y=12x2-lnx發(fā)布:2024/12/6 3:0:2組卷:67引用:3難度:0.5 -
3.函數(shù)
的單調(diào)遞增區(qū)間為( ?。?/h2>f(x)=12x2-lnx發(fā)布:2024/12/13 7:30:1組卷:55引用:2難度:0.6
把好題分享給你的好友吧~~