已知正項(xiàng)等比數(shù)列{an},a2=2,a4-a3=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=(2n-3)an,①求數(shù)列{bn}的前n項(xiàng)和Tn;
②?n∈N*,λ>Tn-54n恒成立,求實(shí)數(shù)λ的范圍;
(3)cn=(-1)n-1an,n=2k-1 (3n+1)ann2+4n+3,n=2k
,求前2n項(xiàng)和S2n;
(4)請(qǐng)同學(xué)們只分析通項(xiàng)公式,確定求和方法即可,無(wú)需求和.
?
n
∈
N
*
,
λ
>
T
n
-
5
4
n
c
n
=
( - 1 ) n - 1 a n , n = 2 k - 1 |
( 3 n + 1 ) a n n 2 + 4 n + 3 , n = 2 k |
通項(xiàng)公式 | 求和方法 |
a n = cos ( nπ ) ( 2 n + 1 ) 3 n |
① |
a n = ( - 1 ) n ( 2 n + 1 ) 2 |
② |
a n = ( n - 1 ) 2 n - 1 ( 2 n + 1 ) ( 2 n + 1 + 1 ) |
③ |
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:111引用:2難度:0.3
相似題
-
1.已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項(xiàng)和為Sn,S9=144,a3是a1與a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足+log2bn=0,若cn=anbn,求數(shù)列{cn}前n項(xiàng)和為Tn.an-13發(fā)布:2024/12/29 12:0:2組卷:129引用:2難度:0.5 -
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:439引用:17難度:0.6