在四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,側(cè)面ADD1A1為菱形,且平面ADD1A1⊥平面ABCD.
(1)證明:AD1⊥A1C;
(2)設(shè)點(diǎn)P在棱A1B1上運(yùn)動(dòng),若∠A1AD=π3,且AB=2,記直線AD1與平面PBC所成的角為θ,當(dāng)sinθ=14時(shí),求A1P的長(zhǎng)度.
π
3
1
4
【考點(diǎn)】點(diǎn)、線、面間的距離計(jì)算;直線與平面所成的角.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:120引用:1難度:0.4
相似題
-
1.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,CD⊥AD,面ABCD⊥面ADEF,AB=AD=1.CD=2.
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,說明理由?3EM=EC
(3)在(2)的條件下,求點(diǎn)A到平面MBC的距離.發(fā)布:2025/1/2 8:0:1組卷:109引用:1難度:0.3 -
2.如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求點(diǎn)A到平面DMF的距離.發(fā)布:2025/1/2 8:0:1組卷:11引用:1難度:0.5 -
3.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,CD⊥AD,面ABCD⊥面ADEF,AB=AD=1.CD=2.
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),,求點(diǎn)A到平面MBD的距離.2EM=EC發(fā)布:2025/1/2 8:0:1組卷:6引用:1難度:0.5
把好題分享給你的好友吧~~