閱讀理解應(yīng)用.
待定系數(shù)法:設(shè)某一多項式的全部或部分系數(shù)為未知數(shù)、利用當(dāng)兩個多項式為恒等式時,同類項系數(shù)相等的原理確定這些系數(shù),從而得到待求的值.
待定系數(shù)法可以應(yīng)用到因式分解中,例如問題:因式分解x3-1.
因為x3-1為三次多項式,若能因式分解,則可以分解成一個一次多項式和一個二次多項式的乘積.
故我們可以猜想x3-1可以分解成x3-1=(x-1)(x2+ax+b),展開等式右邊得:x3+(a-1)x2+(b-a)x-b,根據(jù)待定系數(shù)法原理,等式兩邊多項式的同類項的對應(yīng)系數(shù)相等:a-1=0,b-a=0,-b=-1,可以求出a=1,b=1.
所以x3-1=(x-1)(x2+x+1).
(1)若x取任意值,等式x2+2x+3=x2+(3-a)x+3恒成立,則a=11;
(2)已知多項式x4+x2+1有因式x2+x+1,請用待定系數(shù)法求出該多項式的另一因式;
(3)請判斷多項式x4-x2+1是否能分解成的兩個整系數(shù)二次多項式的乘積,并說明理由.
【答案】1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/17 14:30:1組卷:391引用:3難度:0.7
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2536引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:391引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:123引用:3難度:0.4