足球射門時,在不考慮其他因素的條件下,射點到球門AB的張角越大,射門越好.當張角達到最大值時,我們稱該射點為最佳射門點.通過研究發(fā)現(xiàn),如圖1所示,運動員帶球在直線CD上行進時,當存在一點Q,使得∠CQA=∠ABQ(此時也有∠DQB=∠QAB)時,恰好能使球門AB的張角∠AQB達到最大值,故可以稱點Q為直線CD上的最佳射門點.
(1)如圖(2)所示,AB為球門,當運動員帶球沿CD行進時,Q1,Q2,Q3為其中的三個射門點,則在這三個射門點中,最佳射門點為點 Q2Q2;
(2)如圖3所示,是一個矩形狀的足球場,AB為球門,CD⊥AB于點D,AB=3a,BD=a.某球員沿CD向球門AB進攻,設最佳射門點為點Q.
①用含a的代數(shù)式表示DQ的長度并求出tan∠AQB的值;
②已知對方守門員伸開雙臂后,可成功防守的范圍為54a,若此時守門員站在張角∠AQB內(nèi),雙臂張開MN垂直于AQ進行防守,求MN中點與AB的距離至少為多少時才能確保防守成功.(結(jié)果用含a的代數(shù)式表示)
5
4
【考點】四邊形綜合題.
【答案】Q2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:444引用:2難度:0.1
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1468引用:7難度:0.3 -
2.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1410引用:10難度:0.4
把好題分享給你的好友吧~~