已知函數(shù)f(x)=cos(-x)ex(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若不等式af(x)-1e>0在x∈(0,12]上恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:f(1)+f(12)+?+f(1n)>n-1e(n∈N*).
f
(
x
)
=
cos
(
-
x
)
e
x
af
(
x
)
-
1
e
>
0
x
∈
(
0
,
1
2
]
f
(
1
)
+
f
(
1
2
)
+
?
+
f
(
1
n
)
>
n
-
1
e
(
n
∈
N
*
)
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:30引用:1難度:0.6
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實(shí)數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個(gè)極值點(diǎn)x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1 -
3.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時(shí),y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5