在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),M(-1,0),N(1,0),Q為線(xiàn)段MN上異于M,N的一動(dòng)點(diǎn),點(diǎn)P滿(mǎn)足|PM||QM|=|PN||QN|=2.
(1)求點(diǎn)P的軌跡E的方程;
(2)點(diǎn)A,C是曲線(xiàn)E上兩點(diǎn),且在x軸上方,滿(mǎn)足AM∥NC,求四邊形AMNC面積的最大值.
|
PM
|
|
QM
|
=
|
PN
|
|
QN
|
【考點(diǎn)】軌跡方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/17 8:0:8組卷:74引用:3難度:0.5
相似題
-
1.過(guò)橢圓
+x25=1的左焦點(diǎn)F作橢圓的弦AB.如圖y24
(1)求此橢圓的左焦點(diǎn)F的坐標(biāo)和橢圓的準(zhǔn)線(xiàn)方程(x=±);a2c
(2)求弦AB中點(diǎn)M的軌跡方程.發(fā)布:2024/12/1 8:0:1組卷:21引用:1難度:0.3 -
2.古希臘著名數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓,此圓被稱(chēng)為“阿波羅尼斯圓”.在平面直角坐標(biāo)系xOy中,已知A(-4,2),B(2,2),點(diǎn)P滿(mǎn)足
,設(shè)點(diǎn)P的軌跡為圓C,下列結(jié)論正確的是( )|PA||PB|=2發(fā)布:2024/11/4 6:30:2組卷:302引用:18難度:0.5 -
3.設(shè)M是圓P:x2+(y+2)2=36上的一動(dòng)點(diǎn),定點(diǎn)Q(0,2),線(xiàn)段MQ的垂直平分線(xiàn)交線(xiàn)段PM于N點(diǎn),則N點(diǎn)的軌跡方程為( ?。?/h2>
發(fā)布:2024/12/14 4:30:2組卷:79引用:5難度:0.5
把好題分享給你的好友吧~~