已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)F(-2,0).
(1)求雙曲線的方程;
(2)設(shè)Q是雙曲線上的點(diǎn),且過Q、F的直線L與y軸交于點(diǎn)M,若MQ=2QF,求直線L的方程.
MQ
=
2
QF
【考點(diǎn)】雙曲線的性質(zhì);共線向量的坐標(biāo)表示.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:9引用:1難度:0.6
相似題
-
1.雙曲線
的漸近線方程為( ?。?/h2>x24-y2=1發(fā)布:2025/1/2 22:30:1組卷:6引用:3難度:0.9 -
2.過雙曲線
的右焦點(diǎn)且與x軸垂直的直線交該雙曲線的兩條漸近線于A、B兩點(diǎn),則|AB|=( )x2-y23=1發(fā)布:2025/1/2 21:30:1組卷:7引用:2難度:0.6 -
3.已知拋物線y2=8x的準(zhǔn)線過雙曲線
的一個(gè)焦點(diǎn),且雙曲線的離心率為2,則該雙曲線的方程為x2a2-y2b2=1(a>0,b>0)發(fā)布:2025/1/2 21:30:1組卷:6引用:2難度:0.7