已知函數(shù)f(x)=x3+klnx(k∈R),f′(x)為f(x)的導(dǎo)函數(shù).
(1)當k=6時,求函數(shù)g(x)=f(x)-f′(x)+9x的單調(diào)區(qū)間和極值;
(2)當k≥-3時,求證:對任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)-f(x2)x1-x2.
g
(
x
)
=
f
(
x
)
-
f
′
(
x
)
+
9
x
f
′
(
x
1
)
+
f
′
(
x
2
)
2
>
f
(
x
1
)
-
f
(
x
2
)
x
1
-
x
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 8:0:8組卷:59引用:1難度:0.2
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:262引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
把好題分享給你的好友吧~~