如圖,F(xiàn)1,F(xiàn)2是雙曲線C:x2a2-y2b2=1(a>0,b>0)的左、右焦點,過F1的直線l與C的左、右兩支分別交于A,B兩點,若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為( )
x
2
a
2
y
2
b
2
【考點】雙曲線的幾何特征.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:129引用:17難度:0.7
相似題
-
1.已知一個雙曲線的方程為:
-x2m-3=1,則m的取值范圍是.y2m+2發(fā)布:2024/12/29 2:30:1組卷:171引用:3難度:0.9 -
2.O是坐標原點,P是雙曲線E:
=1(a>0,b>0)右支上的一點,F(xiàn)是E的右焦點,延長PO,PF分別交E于Q,R兩點,已知QF⊥FR,且|QF|=2|FR|,則E的離心率為 .x2a2-y2b2發(fā)布:2024/12/29 3:0:1組卷:120引用:4難度:0.5 -
3.雙曲線
-x29=1的漸近線方程是( ?。?/h2>y24發(fā)布:2024/12/29 3:0:1組卷:121引用:16難度:0.9
把好題分享給你的好友吧~~