試卷征集
加入會(huì)員
操作視頻

設(shè)n是正整數(shù),r為正有理數(shù).
(Ⅰ)求函數(shù)f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;
(Ⅱ)證明:
n
r
+
1
-
n
-
1
r
+
1
r
+
1
n
r
n
+
1
r
+
1
-
n
r
+
1
r
+
1
;
(Ⅲ)設(shè)x∈R,記[x]為不小于x的最小整數(shù),例如
[
2
]
=
2
,
[
π
]
=
4
[
-
3
2
]
=
-
1
.令
S
=
3
81
+
3
82
+
3
83
+
+
3
125
,
[
S
]
的值.
(參考數(shù)據(jù):
8
0
4
3
344
.
7
8
1
4
3
350
.
5
,
12
4
4
3
618
.
3
,
12
6
4
3
631
.
7

【考點(diǎn)】不等式的證明
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1096引用:4難度:0.1
相似題
  • 1.若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
    (1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
    (2)對(duì)任意正數(shù)a,b,證明:(a+b)(a2+b2)(a3+b3)≥8a3b3;
    (3)對(duì)任意兩個(gè)不相等的正數(shù)a,b,證明:a3+b3比a2b+ab2遠(yuǎn)離
    2
    ab
    ab

    發(fā)布:2024/10/10 0:0:4組卷:20引用:1難度:0.4
  • 2.我們知道,
    a
    +
    b
    2
    2
    a
    2
    +
    b
    2
    2
    ,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立.即a,b的算術(shù)平均數(shù)的平方不大于a,b平方的算術(shù)平均數(shù).此結(jié)論可以推廣到三元,即
    a
    +
    b
    +
    c
    3
    2
    a
    2
    +
    b
    2
    +
    c
    2
    3
    ,當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立.
    (1)證明:
    a
    +
    b
    +
    c
    3
    2
    a
    2
    +
    b
    2
    +
    c
    2
    3
    ,當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立.
    (2)已知x>0,y>0,z>0,若不等式
    x
    +
    y
    +
    z
    t
    x
    +
    y
    +
    z
    恒成立,利用(1)中的不等式,求實(shí)數(shù)t的最小值.

    發(fā)布:2024/10/12 1:0:1組卷:15引用:2難度:0.4
  • 3.已知a、b、c為實(shí)數(shù),3a=4b=6c(abc≠0).
    (1)求證:
    2
    a
    +
    1
    b
    =
    2
    c

    (2)若不等式
    m
    2
    +
    2
    a
    +
    b
    c
    ,對(duì)任意實(shí)數(shù)a、b、c均成立,求實(shí)數(shù)m的取值范圍.

    發(fā)布:2024/10/9 12:0:1組卷:12引用:1難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正