已知{an}是等比數(shù)列,{bn}是等差數(shù)列,且a1=2,b1=1,a3b4=2a4,a2=b1+b3.
(1)求{an}和{bn}的通項公式;
(2)將{an}和{bn}中的所有項按從小到大的順序排列組成新數(shù)列{cn},求數(shù)列{cn}的前50項和T50;
(3)設(shè)數(shù)列{dn}的通項公式為:dn=-bn(an)22,n為奇數(shù) bn(an)24,n為偶數(shù)
,m∈N*,求2n∑i=1di.
a
1
=
2
,
b
1
=
1
d
n
=
- b n ( a n ) 2 2 , n 為奇數(shù) |
b n ( a n ) 2 4 , n 為偶數(shù) |
2
n
∑
i
=
1
d
i
【考點】錯位相減法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:249引用:1難度:0.5
相似題
-
1.已知數(shù)列{an}、{bn}滿足
,若數(shù)列{an}是等比數(shù)列且a1=3,b4=4+b3.a1a2a3?an=3bn
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令cn=,求{cn}的前n項和為Sn.2bn(n+1)an發(fā)布:2024/12/6 20:30:1組卷:179引用:3難度:0.6 -
2.已知等差數(shù)列{an}的前n項和為Sn,且S8=100,a2=5,設(shè)數(shù)列{bn}的前n項和為Pn=2n+1-2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項和為Tn.發(fā)布:2024/12/7 19:0:1組卷:57引用:2難度:0.6 -
3.已知數(shù)列{an}中,a1=1,且an+1=2an+2n(n∈N*).
(1)求證:數(shù)列{}是等差數(shù)列,并求出an;an2n
(2)數(shù)列{an}前n項和為Sn,求Sn.發(fā)布:2024/12/7 22:0:2組卷:443引用:3難度:0.7
把好題分享給你的好友吧~~