試卷征集
加入會(huì)員
操作視頻

勒洛四面體是一個(gè)非常神奇的“四面體”,它能在兩個(gè)平行平面間自由轉(zhuǎn)動(dòng),并且始終保持與兩平面都接觸,因此它能像球一樣來回滾動(dòng).勒洛四面體是以正四面體的四個(gè)頂點(diǎn)為球心,以正四面體的棱長(zhǎng)為半徑的四個(gè)球的公共部分,如圖所示,若正四面體ABCD的棱長(zhǎng)為a.
①能夠容納勒洛四面體的正方體的棱長(zhǎng)的最小值為a
②勒洛四面體能夠容納的最大球的半徑為
1
-
3
2
a

③勒洛四面體中過A、B、C三點(diǎn)的截面面積為
1
4
2
π
-
3
a
2

④勒洛四面體的體積
V
2
12
a
3
,
6
π
8
a
3

上述命題中正確的是
①④
①④

【答案】①④
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 10:0:1組卷:119引用:1難度:0.2
相似題
  • 1.如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
    3
    2
    ,四邊形DCBE為平行四邊形,DC⊥平面ABC.
    (1)求三棱錐C-ABE的體積;
    (2)證明:平面ACD⊥平面ADE;
    (3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.

    發(fā)布:2025/1/20 8:0:1組卷:95引用:3難度:0.1
  • 2.如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面,且AB=2,AD=EF=1.
    (Ⅰ)設(shè)CD的中點(diǎn)為M,求證:EM∥平面DAF;
    (Ⅱ)求三棱錐B-CME的體積.

    發(fā)布:2025/1/20 8:0:1組卷:16引用:1難度:0.5
  • 3.如圖所示,AB為圓O的直徑,PC⊥平面ABC,Q在線段PA上.
    (1)求證:平面BCQ⊥平面ACQ;
    (2)若Q為靠近P的一個(gè)三等分點(diǎn),PC=BC=1,
    AC
    =
    2
    2
    ,求VP-BCQ的值.

    發(fā)布:2025/1/20 8:0:1組卷:36引用:3難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正