勒洛四面體是一個(gè)非常神奇的“四面體”,它能在兩個(gè)平行平面間自由轉(zhuǎn)動(dòng),并且始終保持與兩平面都接觸,因此它能像球一樣來回滾動(dòng).勒洛四面體是以正四面體的四個(gè)頂點(diǎn)為球心,以正四面體的棱長(zhǎng)為半徑的四個(gè)球的公共部分,如圖所示,若正四面體ABCD的棱長(zhǎng)為a.
①能夠容納勒洛四面體的正方體的棱長(zhǎng)的最小值為a
②勒洛四面體能夠容納的最大球的半徑為(1-32)a
③勒洛四面體中過A、B、C三點(diǎn)的截面面積為14(2π-3)a2
④勒洛四面體的體積V∈(212a3,6π8a3)
上述命題中正確的是 ①④①④.
(
1
-
3
2
)
a
1
4
(
2
π
-
3
)
a
2
V
∈
(
2
12
a
3
,
6
π
8
a
3
)
【考點(diǎn)】棱柱、棱錐、棱臺(tái)的體積;命題的真假判斷與應(yīng)用.
【答案】①④
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 10:0:1組卷:119引用:1難度:0.2
相似題
-
1.如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
,四邊形DCBE為平行四邊形,DC⊥平面ABC.32
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.發(fā)布:2025/1/20 8:0:1組卷:95引用:3難度:0.1 -
2.如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)設(shè)CD的中點(diǎn)為M,求證:EM∥平面DAF;
(Ⅱ)求三棱錐B-CME的體積.發(fā)布:2025/1/20 8:0:1組卷:16引用:1難度:0.5 -
3.如圖所示,AB為圓O的直徑,PC⊥平面ABC,Q在線段PA上.
(1)求證:平面BCQ⊥平面ACQ;
(2)若Q為靠近P的一個(gè)三等分點(diǎn),PC=BC=1,,求VP-BCQ的值.AC=22發(fā)布:2025/1/20 8:0:1組卷:36引用:3難度:0.6