材料一:法國數學家弗朗索瓦?韋達于1615年在著作《論方程的識別與訂正》中建立了方程根與系數的關系,提出一元二次方程ax2+bx+c=0(a≠0)的根完全由它的系數決定,當b2-4ac≥0時有兩根:x1=-b+b2-4ac2a,x2=-b+b2+4ac2a,于是,兩根之和為x1+x2=-b+b2-4ac2a+-b+b2+4ac2a=-2b2a=-ba,兩根之積x1?x2=-b+b2-4ac2a?-b+b2+4ac2a=b2-(b2+4ac)24a2=b2-b2+4ac4a2=ca.由于韋達最早發(fā)現(xiàn)代數方程的根與系數之間的這種關系,人們把這個關系稱為韋達定理,利用韋達定理可以快速求出兩個方程根的關系.
材料二:已知一元二次方程ax2-2bx+c=0(a≠0)的兩個根滿足|x1-x2|=2,且a、b、c分別是△ABC的∠A、∠B、∠C的對邊,若a=c,求∠B的度數.
解題過程如下:x1+x2=--2ba=2ba,x1?x2=ca=1.
∵|x1-x2|=2,|x1-x2|2=2.
又∵|x1-x2|2=(x1-x2)2=(x1+x2)2-4x1x2=2b2a2-4.
∴b2a2=3.
∵a>0,b>0,
∴ba=3.
如圖,過點B作BH⊥AC,則HC=12AC=12b.
∵cosC=HCBC=12ba=32,
∴∠C=30°,∴∠B=120°.
(1)在上題中,將方程改為ax2-3bx+c=0(a≠0),要得到∠B=120°,而條件“a=c”不變,那么對應條件中的|x1-x2|的值是多少?請說明理由.
(2)已知一元二次方程ax2-nbx+c=0(n≥0,a≠0)的兩根滿足(x1-x2)2=2|x1-x2|,且a、b、c分別是△ABC的∠A、∠B、∠C的對邊,若∠A=30°,∠B=45°,求n的值.
-
b
+
b
2
-
4
ac
2
a
,
x
2
=
-
b
+
b
2
+
4
ac
2
a
-
b
+
b
2
-
4
ac
2
a
+
-
b
+
b
2
+
4
ac
2
a
-
2
b
2
a
b
a
-
b
+
b
2
-
4
ac
2
a
?
-
b
+
b
2
+
4
ac
2
a
b
2
-
(
b
2
+
4
ac
)
2
4
a
2
b
2
-
b
2
+
4
ac
4
a
2
c
a
-
2
2
-
2
b
a
2
b
a
c
a
2
2
b
2
a
2
b
2
a
2
b
a
3
1
2
1
2
HC
BC
1
2
b
a
3
2
-
3
-
n
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:34引用:1難度:0.4
相似題
-
1.已知關于x的一元二次方程x2+5x-m=0的一個根是2,則另一個根是 .
發(fā)布:2024/12/23 9:30:1組卷:1713引用:19難度:0.6 -
2.解答下列各題:
(1)計算:tan45°+-2-2-(π-1)0+|-(sin60°-1)2|3
(2)已知x1=1是關于x的一元二次方程x2+(2m-1)x+m2=0的一個根,求m的值及方程的另一個根.發(fā)布:2024/12/26 8:0:1組卷:76難度:0.7 -
3.若x1,x2是一元二次方程x2-5x+6=0的兩個根,則x1+x2,x1x2的值分別是( )
發(fā)布:2025/1/4 0:30:3組卷:424難度:0.7