綜合與實踐
【背景介紹】
勾股定理是幾何學(xué)中的明珠,充滿著魅力.勾股定理是用代數(shù)思想解決幾何問題的最重要的工具之一,它不但因證明方法層出不窮吸引著人們,更因為應(yīng)用廣泛而使人著迷.
【證明方法】
如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以證明勾股定理,思路是大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即12ab×4+(b-a)2,從而得到等式c2=12ab×4+(b-a)2,化簡便得結(jié)論.a(chǎn)2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.
![](https://img.jyeoo.net/quiz/images/svg/202311/91/80d65855.png)
【方法應(yīng)用】
請利用“雙求法”解決下面的問題:
(1)如圖2,小正方形邊長為1,連接小正方形的三個頂點,可得△ABC,則AB邊上的高為 141717141717.
【方法遷移】
(2)如圖3,在△ABC中,AC=14,AB=16,BC=6,AD是BC邊上的高,求AD的值.
【定理應(yīng)用】
(3)如圖4,在長方形ABCD中,AB=3,AB在數(shù)軸上,若以點A為圓心,對角線AC的長為半徑作弧交數(shù)軸的正半軸于點M,則點M表示的數(shù)為 13-213-2.
【數(shù)學(xué)思想】
(4)在解決以上問題的過程中,讓我們感悟的數(shù)學(xué)思想有 ①②①②(填序號).
①方程思想
②數(shù)形結(jié)合思想
③分類討論思想
④函數(shù)思想
1
2
ab
×
4
+
(
b
-
a
)
2
c
2
=
1
2
ab
×
4
+
(
b
-
a
)
2
14
17
17
14
17
17
13
13
【答案】;-2;①②
14
17
17
13
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/28 17:0:1組卷:174引用:3難度:0.5
相似題
-
1.10.《時代數(shù)學(xué)學(xué)習(xí)》雜志2007年3月將改版為《時代學(xué)習(xí)報?數(shù)學(xué)周刊》,其徽標(biāo)是我國古代“弦圖”的變形(見示意圖).該圖可由直角三角形ABC繞點O同向連續(xù)旋轉(zhuǎn)三次(每次旋轉(zhuǎn)90°)而得.因此有“數(shù)學(xué)風(fēng)車”的動感.假設(shè)中間小正方形的面積為1,整個徽標(biāo)(含中間小正方形)的面積為92,AD=2,則徽標(biāo)的外圍周長為( ?。?/h2>
A.40 B.44 C.46 D.48 發(fā)布:2025/1/25 8:0:2組卷:355引用:2難度:0.6 -
2.用四個全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(x>y),給出下列四個結(jié)論正確的是 .(填序號即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發(fā)布:2024/12/23 12:0:2組卷:447引用:3難度:0.6 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的邊長為( ?。?/h2>
A.9 B.6 C.4 D.3 發(fā)布:2024/12/19 23:30:5組卷:1770引用:28難度:0.6