已知集合A={a1,a2,…,an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性質(zhì)P:對(duì)任意i、j(1≤i≤j≤m),ai+aj與aj-ai至少一個(gè)屬于A.
(1)分別判斷集合C={0,2,4}與D={1,2,3}是否具有性質(zhì)P,并說(shuō)明理由;
(2)A={a1,a2,a3}具有性質(zhì)P,當(dāng)a2=2023時(shí),求集合A;
(3)記f(n)=ana1+a2+a3+…+an,求f(2023).
A
=
{
a
1
,
a
2
,…,
a
n
}
(
0
≤
a
1
<
a
2
<
…
<
a
n
,
n
∈
N
*
,
n
≥
3
)
f
(
n
)
=
a
n
a
1
+
a
2
+
a
3
+
…
+
a
n
【考點(diǎn)】數(shù)列的應(yīng)用.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/5 2:0:1組卷:44引用:4難度:0.2
相似題
-
1.2023年是我國(guó)規(guī)劃的收官之年,2022年11月23日全國(guó)22個(gè)省份的832個(gè)國(guó)家級(jí)貧困縣全部脫貧摘帽.利用電商平臺(tái),開(kāi)啟數(shù)字化科技優(yōu)勢(shì),帶動(dòng)消費(fèi)扶貧起到了重要作用.阿里研究院數(shù)據(jù)顯示,2013年全國(guó)淘寶村僅為20個(gè),通過(guò)各地政府精準(zhǔn)扶貧,與電商平臺(tái)不斷合作創(chuàng)新,2014年、2015年、2016年全國(guó)淘寶村分別為212個(gè)、779個(gè)、1311個(gè),從2017年起比上一年約增加1000個(gè)淘寶村,請(qǐng)你估計(jì)收官之年全國(guó)淘寶村的數(shù)量可能為( ?。?/h2>
發(fā)布:2024/12/18 13:30:2組卷:89引用:1難度:0.9 -
2.已知{an},{bn}為兩非零有理數(shù)列(即對(duì)任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無(wú)理數(shù)列(即對(duì)任意的i∈N*,di為無(wú)理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對(duì)任意的n∈N*恒成立,試求{dn}的通項(xiàng)公式.
(2)若{dn3}為有理數(shù)列,試證明:對(duì)任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,試計(jì)算bn.3tan(n?π2+(-1)nθ)發(fā)布:2024/12/22 8:0:1組卷:189引用:3難度:0.1 -
3.對(duì)于數(shù)列{an},把a(bǔ)1作為新數(shù)列{bn}的第一項(xiàng),把a(bǔ)i或-ai(i=2,3,4,…,n)作為新數(shù)列{bn}的第i項(xiàng),數(shù)列{bn}稱為數(shù)列{an}的一個(gè)生成數(shù)列.例如,數(shù)列1,2,3,4,5的一個(gè)生成數(shù)列是1,-2,-3,4,5.已知數(shù)列{bn}為數(shù)列{
}(n∈N*)的生成數(shù)列,Sn為數(shù)列{bn}的前n項(xiàng)和.12n
(Ⅰ)寫(xiě)出S3的所有可能值;
(Ⅱ)若生成數(shù)列{bn}滿足S3n=(1-17),求數(shù)列{bn}的通項(xiàng)公式;18n
(Ⅲ)證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為{x|x=,k∈N*,k≤2n-1}.2k-12n發(fā)布:2024/12/28 23:30:2組卷:115引用:6難度:0.1