我們知道,任意一個(gè)正整數(shù)x都可以進(jìn)行這樣的分解:x=m×n(m,n是正整數(shù),且m≤n),在x的所有這種分解中,如果m,n兩因數(shù)之差的絕對值最小,我們就稱m×n是x的最佳分解.并規(guī)定:f(x)=mn.
例如:18可以分解成1×18,2×9或3×6,因?yàn)?8-1>9-2>6-3,所以3×6是18的最佳分解,所以f(18)=36=12.
(1)填空:f(6)=2323;f(9)=11;
(2)一個(gè)兩位正整數(shù)t(t=10a+b,1≤a≤b≤9,a,b為正整數(shù)),交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54,求出所有的兩位正整數(shù);并求f(t)的最大值;
(3)填空:
①f(22×3×5×7)=20212021;②f(23×3×5×7)=14151415;③f(24×3×5×7)=20212021;④f(25×3×5×7)=14151415.
m
n
3
6
1
2
2
3
2
3
20
21
20
21
14
15
14
15
20
21
20
21
14
15
14
15
【考點(diǎn)】因式分解的應(yīng)用.
【答案】;1;;;;
2
3
20
21
14
15
20
21
14
15
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 12:0:8組卷:1204引用:19難度:0.6
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4