為了精準(zhǔn)地找到目標(biāo)人群,更好地銷售新能源汽車,某4S店對近期購車的男性與女性各100位進(jìn)行問卷調(diào)查,并作為樣本進(jìn)行統(tǒng)計(jì)分析,得到如下列聯(lián)表(m≤40,m∈N):
購買新能源汽車(人數(shù)) | 購買傳統(tǒng)燃油車(人數(shù)) | |
男性 | 80-m | 20+m |
女性 | 60+m | 40-m |
(2)定義K2=
∑
(
A
ij
-
B
ij
)
2
B
ij
(
2
≤
i
≤
3
,
2
≤
j
≤
3
,
i
,
j
∈
N
)
(i)當(dāng)m=0時,依據(jù)小概率值α=0.005的獨(dú)立性檢驗(yàn),請分析性別與是否喜愛購買新能源汽車有關(guān);
(ⅱ)當(dāng)m<10時,依據(jù)小概率值α=0.1的獨(dú)立性檢驗(yàn),若認(rèn)為性別與是否喜愛購買新能源汽車有關(guān),則至少有多少名男性喜愛購買新能源汽車?
附:
α | 0.1 | 0.025 | 0.005 |
xα | 2.706 | 5.024 | 7.879 |
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:75引用:4難度:0.5
相似題
-
1.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
把好題分享給你的好友吧~~