在三棱柱ABC-A1B1C1中,側面正方形BB1C1C的中心為點M,A1M⊥平面BB1C1C,且BB1=2,AB=3,點E滿足A1E=λA1C1(0≤λ≤1).
(1)若A1B∥平面B1CE,求λ的值;
(2)求點E到平面ABC的距離;
(3)若平面ABC與平面B1CE所成角的正弦值為255,求λ的值.
B
B
1
=
2
,
AB
=
3
A
1
E
=
λ
A
1
C
1
(
0
≤
λ
≤
1
)
2
5
5
【考點】二面角的平面角及求法;點、線、面間的距離計算.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:161引用:4難度:0.4
相似題
-
1.如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點.
(Ⅰ)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關系,并加以證明;
(Ⅱ)設(Ⅰ)中的直線l與圓O的另一個交點為D,且點Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E-l-C的大小為β.求證:sinθ=sinαsinβ.DQ=12CP發(fā)布:2025/1/20 8:0:1組卷:880引用:12難度:0.1 -
2.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M為AE的中點.12
(1)證明:AC∥平面MDF;
(2)求平面MDF與平面BCF的夾角的大小.發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6 -
3.如圖,AB是圓O的直徑,PA垂直于圓所在的平面,C是圓周上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=2,PA=2,求二面角C-PB-A的度數(shù).2發(fā)布:2025/1/28 8:0:2組卷:33引用:1難度:0.5