已知函數(shù)f(x)=ex-lnxx-1.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)-ax有兩個(gè)零點(diǎn)x1,x2(其中x1<x2),求實(shí)數(shù)a的取值范圍.
f
(
x
)
=
e
x
-
lnx
x
-
1
g
(
x
)
=
f
(
x
)
-
a
x
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:32引用:2難度:0.4
相似題
-
1.已知函數(shù)f(x)=-x3+3x2+9x+a(a為常數(shù)),在區(qū)間[-2,2]上有最大值20,那么此函數(shù)在區(qū)間[-2,2]上的最小值為( ?。?/h2>
發(fā)布:2024/12/29 9:0:1組卷:216引用:5難度:0.9 -
2.函數(shù)f(x)=aex+x2-lnx(e為自然對數(shù)的底數(shù)),a為常數(shù),曲線f(x)在x=1處的切線方程為(e+1)x-y=0.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)證明:f(x)的最小值大于.54+ln2發(fā)布:2024/12/29 9:0:1組卷:218引用:9難度:0.6 -
3.一艘船的燃料費(fèi)y(單位:元/時(shí))與船速x(單位:千米/時(shí))的關(guān)系是y=
x3+x.若該船航行時(shí)其他費(fèi)用為540元/時(shí),則在100千米的航程中,要使得航行的總費(fèi)用最少,航速應(yīng)為 千米/時(shí).1100發(fā)布:2024/12/29 8:30:1組卷:7引用:4難度:0.6
把好題分享給你的好友吧~~