把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)兩種不同的方式計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)等式,也可以求出一些不規(guī)則圖形的面積.
例如,由圖1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由圖2,可得等式 (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(2)利用(1)所得等式,解決問(wèn)題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如圖3,將兩個(gè)邊長(zhǎng)為a、b的正方形拼在一起,B,C,G三點(diǎn)在同一直線上,連接BD和BF,若這兩個(gè)正方形的邊長(zhǎng)a、b如圖標(biāo)注,且滿足a+b=10,ab=20.請(qǐng)求出陰影部分的面積.
【答案】(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:742引用:5難度:0.6
相似題
-
1.閱讀下列題目的解題過(guò)程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫(xiě)明驗(yàn)證過(guò)程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4