綜合與實踐
問題情境:綜合與實踐課上,老師讓同學(xué)們以“正方形紙片的折疊”為主題開展數(shù)學(xué)活動,下面是同學(xué)們的折紙過程:
動手操作:步驟一:將正方形紙片ABCD(邊長為4cm)對折,使得點A與點D重合,折痕為EF,再將紙片ABCD展開,得到圖1.
步驟二:將圖1中的紙片ABCD的右上角沿著CE折疊,使點D落到點G的位置,連接EG,CG,得到圖2.
步驟三:在圖2的基礎(chǔ)上,延長EG與邊AB交于點H,得到圖3.
問題解決:(1)在圖3中,連接HC,則∠ECH的度數(shù)為 45°45°,HBAH的值為 1212.
(2)在圖3的基礎(chǔ)上延長CG與邊AB交于點M,如圖4,試猜想AM與BM之間的數(shù)量關(guān)系,并說明理由;
(3)將圖4中的正方形ABCD紙片過點G折疊,使點A落在邊AD上,然后再將正方形紙片ABCD展開,折痕PQ分別與邊AD,BC交于點P,Q,求GQ的長.
![](https://img.jyeoo.net/quiz/images/202106/2/247299c7.png)
HB
AH
1
2
1
2
【考點】幾何變換綜合題.
【答案】45°;
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:630引用:4難度:0.4
相似題
-
1.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關(guān)于直線BC的對稱點為M,聯(lián)結(jié)DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關(guān)系并證明.發(fā)布:2024/12/23 14:0:1組卷:263引用:2難度:0.2 -
2.如圖(1),在矩形ABCD中,AB=6,BC=2
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達(dá)A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當(dāng)兩點相遇時停止運動,在點E、F的運動過程中,如圖(2)以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運動的時間為t秒(t>0).3
(1)如圖(3),當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)如圖(4),當(dāng)?shù)冗叀鱁FG的頂點G恰好落在CD邊上時,求運動時間t的值;
(3)在整個運動過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請求出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量,的取值范圍.發(fā)布:2025/1/13 8:0:2組卷:357引用:2難度:0.5 -
3.如圖,在菱形ABCD中,AB=10cm,對角線BD=12cm,動點P從點A出發(fā),以1cm/s的速度沿AB勻速運動;動點Q同時從點D出發(fā),以2cm/s的速度沿BD的延長線方向勻速運動.當(dāng)點P到達(dá)點B時,點P,Q同時停止運動.設(shè)運動時間為t(s)(0<t≤10),過點P作PE∥BD,交AD于點E,以DQ、DE為邊作?DQFE,連接PD,PQ.
(1)當(dāng)t為何值時,點P在以BQ為直徑的圓上?
(2)設(shè)四邊形BPFQ的面積為S(cm2),求S與t的函數(shù)關(guān)系式.
(3)在運動過程中,是否存在某一時刻t,使四邊形BPFQ的面積與菱形ABCD面積之比為25:32?若存在,求出t的值;若不存在,請說明理由.
(4)是否存在某一時刻t,使點P在∠BQF的平分線上?若存在,求出t的值;若不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:25引用:0難度:0.2
相關(guān)試卷