如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關于x的一元二次方程-x2+mx-t=0(t為實數(shù))在1≤x≤3的范圍內(nèi)有解,則t的取值錯誤的是( ?。?/h1>
【考點】拋物線與x軸的交點;二次函數(shù)的性質.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/13 15:0:8組卷:1617引用:13難度:0.5
相似題
-
1.二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應滿足( ?。?/h2>
發(fā)布:2024/12/23 14:30:1組卷:158引用:5難度:0.9 -
2.已知:二次函數(shù)y=-x2+x+6,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù),當直線y=m與新圖象有2個交點時,m的取值范圍是( )
發(fā)布:2024/12/23 12:0:2組卷:436引用:2難度:0.5 -
3.函數(shù)y=kx2-4x+4的圖象與x軸有交點,則k的取值范圍是( )
發(fā)布:2025/1/2 5:0:3組卷:376引用:2難度:0.7