試卷征集
加入會員
操作視頻

閱讀感悟:
“數(shù)形結合”是一種重要的數(shù)學思想方法,同一個問題有“數(shù)”、“形”兩方面的特性,解決數(shù)學問題,有的從“數(shù)”入手簡單,有的從“形”入手簡單,因此,可能“數(shù)”→“形”或“形”→“數(shù)”,有的問題需要經(jīng)過幾次轉化.這對于初、高中數(shù)學的解題都很有效,應用廣泛.
解決問題:
(1)如圖1,?ABCD,AB=15,AD=14,AC=13,求tanB;
(2)已知函數(shù)y1=x2,y2=ax-1,當x<
1
2
時,y1>y2,則整數(shù)a可取的最大值與最小值的和是
1
1

(3)如圖2,矩形ABCD的邊長AB=2,BC=3,點E、F分別是AD、BC邊上的動點(與矩形頂點不重合),連接BE、CE,過F作FG∥CE交BE于G,作FH∥BE交CE于H.當△EFG面積最大時,求
EH
CH
的值.

【答案】1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:279引用:2難度:0.2
相似題
  • 1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
    (1)求該拋物線的解析式;
    (2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
    (3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
    ①m取何值時,過點P、M、N、F的平面圖形不是梯形?
    ②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.

    發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5
  • 2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為

    發(fā)布:2024/12/23 17:30:9組卷:3671引用:37難度:0.4
  • 3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
    5
    ,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.若拋物線y=ax2-4
    5
    ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>

    發(fā)布:2024/12/26 1:30:3組卷:2669引用:7難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正