觀察下列式子:11×2=1-12;12×3=12-13;13×4=13-14;將這三個式子相加得到11×2+12×3+13×4=1-12+12-13+13-14=34.
(1)猜想并寫出:1n(n+1)=1n-1n+11n-1n+1;
(2)直接寫出下列各式的計算結(jié)果:
①11×2+12×3+13×4+?+12018×2019=2018201920182019;
②11×2+12×3+13×4+?+1n(n+1)=nn+1nn+1.
(3)探究并計算:12×4+14×6+16×8+?+12016×2018.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
1
×
2
+
1
2
×
3
+
1
3
×
4
=
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
?
+
1
2018
×
2019
2018
2019
2018
2019
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
?
+
1
n
(
n
+
1
)
n
n
+
1
n
n
+
1
1
2
×
4
+
1
4
×
6
+
1
6
×
8
+
?
+
1
2016
×
2018
【考點】有理數(shù)的混合運算.
【答案】-;;
1
n
1
n
+
1
2018
2019
n
n
+
1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/30 0:0:1組卷:120引用:3難度:0.8
相似題
-
1.計算-32+(-3)2所得的結(jié)果是( ?。?/h2>
發(fā)布:2025/1/1 9:0:3組卷:254引用:14難度:0.7 -
2.我們定義
=ad-bc,例如acbd=1×5-3×4=-7,若1345=-3且21ba=-3,則(ab)2017的值為( )a2b1發(fā)布:2024/12/23 16:30:2組卷:87引用:2難度:0.6 -
3.若規(guī)定“!”是一種數(shù)學(xué)運算符號,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,則
的值為( )100!98!發(fā)布:2024/12/23 19:0:2組卷:1248引用:17難度:0.7
把好題分享給你的好友吧~~