【問題情境】:
在綜合與實踐課上,老師讓同學們以“矩形紙片的剪拼”為主題開展數學活動.如圖1,將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
【操作發(fā)現】:
(1)將圖1中的△ACD以點A為旋轉中心,按逆時針方向旋轉∠α,使∠α=∠BAC,得到如圖2所示的△AC′D,過點C作AC′的平行線,與DC′的延長線交于點E,則以點A、C、E、C′為頂點的四邊形是什么特殊四邊形?并說明理由.
(2)創(chuàng)新小組將圖1中的△ACD以點A為旋轉中心,按逆時針方向旋轉,使B、A、D三點在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC′的中點F,連接AF并延長至點G,使FG=AF,連接CG、C′G,得到四邊形ACGC′,發(fā)現它是正方形,請你證明這個結論.
【實踐探究】:
(3)縝密小組在創(chuàng)新小組發(fā)現結論的基礎上,進行如下操作:將△ABC沿著BD方向平移,使點B與點A重合,此時A點平移至A′點,A′C與BC′相交于點H,如圖4所示,連接CC′,直接寫出C′HCH的值.
C
′
H
CH
【考點】四邊形綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/7 8:0:9組卷:80引用:2難度:0.4
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1469難度:0.3 -
2.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7難度:0.2 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數;
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結果)5發(fā)布:2024/12/23 18:30:1組卷:1410引用:10難度:0.4
把好題分享給你的好友吧~~