試卷征集
加入會員
操作視頻

已知橢圓Γ:
x
2
a
2
+
y
2
b
2
=
1
a
b
0
的離心率為
6
3
,左、右焦點分別為F1,F2,過F2作不平行于坐標軸的直線交Γ于A,B兩點,且△ABF1的周長為
4
6

(1)求Γ的方程;
(2)求△ABF1面積的取值范圍;
(3)若AM⊥x軸于點M,BN⊥x軸于點N,直線AN與BM交于點C,求證:點C在一條定直線上,并求此定直線.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/18 18:0:1組卷:15引用:2難度:0.5
相似題
  • 1.設橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的右頂點為A,上頂點為B.已知橢圓的離心率為
    5
    3
    ,|AB|=
    13

    (Ⅰ)求橢圓的方程;
    (Ⅱ)設直線l:y=kx(k<0)與橢圓交于P,Q兩點,直線l與直線AB交于點M,且點P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.

    發(fā)布:2024/12/29 12:30:1組卷:4422引用:26難度:0.3
  • 2.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的一個頂點坐標為A(0,-1),離心率為
    3
    2

    (Ⅰ)求橢圓C的方程;
    (Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.

    發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5
  • 3.如果橢圓
    x
    2
    36
    +
    y
    2
    9
    =
    1
    的弦被點(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>

    發(fā)布:2024/12/18 3:30:1組卷:454引用:3難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正