已知函數(shù)f(x)=acosxx+b(a,b∈R).
(Ⅰ)當(dāng)a=1,b=0時,判斷函數(shù)f(x)在區(qū)間(0,π2)內(nèi)的單調(diào)性;
(Ⅱ)已知曲線f(x)=acosxx+b在點(diǎn)(π2,f(π2))處的切線方程為y=-6πx+2.
(?。┣骹(x)的解析式;
(ⅱ)判斷方程f(x)=32π-1在區(qū)間(0,2π]上解的個數(shù),并說明理由.
f
(
x
)
=
acosx
x
+
b
(
a
(
0
,
π
2
)
f
(
x
)
=
acosx
x
+
b
(
π
2
,
f
(
π
2
)
)
y
=
-
6
π
x
+
2
f
(
x
)
=
3
2
π
-
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:232引用:5難度:0.4
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2