在平面直角坐標(biāo)系xOy中,設(shè)二次函數(shù)f(x)=x2+2x+b(b<1)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C.
(1)若b=-3,求此時(shí)圓C的圓心和半徑;
(2)求圓C的一般方程(用含字母b的形式表示);
(3)設(shè)定點(diǎn)A是圓C經(jīng)過的某定點(diǎn)(其坐標(biāo)與b無關(guān)),問是否存在常數(shù)k,使直線y=kx+k與圓C交于點(diǎn)M、N,且|AM|=|AN|.若存在,求k的值;若不存在,請說明理由.
【考點(diǎn)】二次函數(shù)的性質(zhì)與圖象.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/19 3:0:2組卷:14引用:1難度:0.5