已知空間四邊形OABC的各邊及對角線的長都相等,M,N分別是OA,BC的中點,G是MN的中點,求證:
(1)OG⊥BC;
(2)求異面直線ON與BM所成角的余弦值.
【考點】直線與平面垂直;異面直線及其所成的角.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/27 3:0:2組卷:52引用:2難度:0.6
相似題
-
1.如圖,一簡單組合體的一個面ABC內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.
(1)證明:BC⊥平面ACD;
(2)若AB=2,BC=1,tan∠EAB=,試求該簡單組合體的體積V.32發(fā)布:2025/1/20 8:0:1組卷:25引用:1難度:0.5 -
2.如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上不同于A、B的任意一點.
(1)求證:BC⊥平面PAC;
(2)求證:平面PAC⊥平面PBC.發(fā)布:2025/1/28 8:0:2組卷:120難度:0.3 -
3.如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓O上異于A,B的點,
(1)求證:BC⊥平面PAC;
(2)設Q,M分別為PA,AC的中點,問:對于線段OM上的任一點G,是否都有QG∥平面PBC?并說明理由.發(fā)布:2025/1/28 8:0:2組卷:33引用:2難度:0.3