菁于教,優(yōu)于學(xué)
旗下產(chǎn)品
校本題庫
菁優(yōu)備課
開放平臺
菁優(yōu)測評
菁優(yōu)公式
小優(yōu)同學(xué)
菁優(yōu)App
數(shù)字備考
充值服務(wù)
試卷征集
申請校本題庫
智能組卷
錯題庫
五大核心功能
組卷功能
資源共享
在線作業(yè)
在線測評
試卷加工
游客模式
登錄
試題
試題
試卷
課件
試卷征集
加入會員
操作視頻
高中數(shù)學(xué)
小學(xué)
數(shù)學(xué)
語文
英語
奧數(shù)
科學(xué)
道德與法治
初中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語文
英語
道德與法治
歷史
科學(xué)
信息技術(shù)
高中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語文
英語
政治
歷史
信息
通用
中職
數(shù)學(xué)
語文
英語
推薦
章節(jié)挑題
知識點挑題
智能挑題
收藏挑題
試卷中心
匯編專輯
細(xì)目表組卷
組卷圈
當(dāng)前位置:
2022年河南省許平汝聯(lián)盟高考數(shù)學(xué)模擬試卷(文科)(4月份)
>
試題詳情
函數(shù)f(x)=-sin3x的單調(diào)遞增區(qū)間為( ?。?/h1>
A.
[
π
6
+
2
kπ
3
,
π
2
+
2
kπ
3
]
(
k
∈
Z
)
B.
[
π
6
+
kπ
3
,
π
2
+
kπ
3
]
(
k
∈
Z
)
C.
[
-
π
6
+
kπ
3
,
π
6
+
kπ
3
]
(
k
∈
Z
)
D.
[
-
π
6
+
2
kπ
3
,
π
6
+
2
kπ
3
]
(
k
∈
Z
)
【考點】
正弦函數(shù)的單調(diào)性
.
【答案】
A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
當(dāng)前模式為游客模式,
立即登錄
查看試卷全部內(nèi)容及下載
發(fā)布:2024/5/27 14:0:0
組卷:192
引用:2
難度:0.7
相似題
1.
函數(shù)
f
(
x
)
=
ln
(
3
cosx
-
sinx
)
的定義域為
.
發(fā)布:2024/11/4 8:0:2
組卷:42
引用:2
難度:0.7
解析
2.
求函數(shù)y=
lo
g
3
sinx
的定義域.
發(fā)布:2024/11/4 8:0:2
組卷:12
引用:0
難度:0.9
解析
3.
定義函數(shù)f(x)=cos(sinx)為“正余弦”函數(shù).結(jié)合學(xué)過的相關(guān)知識,我們可以得到該函數(shù)的性質(zhì):
1.我們知道,正弦函數(shù)y=sinx和余弦函數(shù)y=cosx的定義域均為R,故函數(shù)f(x)=cos(sinx)的定義域為R.
2.我們知道,正弦函數(shù)y=sinx為奇函數(shù),余弦函數(shù)y=cosx為偶函數(shù),對f(x)=cos(sinx),f(-x)=cos[sin(-x)]=cos(-sinx)=cos(sinx)=f(x),可得:函數(shù)f(x)=cos(sinx)為偶函數(shù).
3.我們知道,正弦函數(shù)y=sinx和余弦函數(shù)y=cosx的最小正周期均為2π,對f(x)=cos(sinx),f(x+2π)=cos[sin(x+2π)]=cos(sinx)=f(x),可知2π為該函數(shù)的周期,是否是最小正周期呢?我們繼續(xù)探究:f(x+π)=cos[sin(x+π)]=cos(-sinx)=cos(sinx)=f(x).
可得:π也為函數(shù)f(x)=cos(sinx)的周期.但是否為該函數(shù)的最小正周期呢?我們來研究f(x)=cos(sinx)在區(qū)間[0,π]上的單調(diào)性,在區(qū)間[0,π]上,余弦函數(shù)y=cosx單調(diào)遞減,正弦函數(shù)y=sinx在
[
0
,
π
2
]
上單調(diào)遞增,在
(
π
2
,
π
]
上單調(diào)遞減,故我們需要分這兩個區(qū)間來討論.
當(dāng)
x
∈
[
0
,
π
2
]
時,設(shè)
0
≤
x
1
<
x
2
≤
π
2
,因正弦函數(shù)y=sinx在
[
0
,
π
2
]
上單調(diào)遞增,故sinx
1
<sinx
2
,令t
1
=sinx
1
,t
2
=sinx
2
,可得0≤t
1
<t
2
≤1<π,而在區(qū)間[0,π]上,余弦函數(shù)y=cosx單調(diào)遞減,故:cost
1
>cost
2
即:cos(sinx
1
)>cos(sinx
2
)從而,
x
∈
[
0
,
π
2
]
時,函數(shù)f(x)=cos(sinx)單調(diào)遞減.
同理可證,
x
∈
(
π
2
,
π
]
時,函數(shù)f(x)=cos(sinx)單調(diào)遞增.可得,函數(shù)f(x)=cos(sinx)在
[
0
,
π
2
]
上單調(diào)遞減,在
(
π
2
,
π
]
上單調(diào)遞增.結(jié)合f(x+π)=f(x).
可以確定:f(x)=cos(sinx)的最小正周期為π.
這樣,我們可以求出該函數(shù)的值域了:
顯然:
f
(
x
)
min
=
f
(
π
2
)
=
cos
(
sin
π
2
)
=
cos
1
,而f(0)=1=f(π)
故f(x)=cos(sinx)的值域為[cos1,1]
定義函數(shù)f(x)=sin(cosx)為“余正弦”函數(shù),根據(jù)閱讀材料的內(nèi)容,解決下列問題:
(1)求該函數(shù)的定義域;
(2)判斷該函數(shù)的奇偶性;
(3)探究該函數(shù)的單調(diào)性及最小正周期,并求其值域.
發(fā)布:2024/11/11 8:0:1
組卷:76
引用:1
難度:0.5
解析
把好題分享給你的好友吧~~
商務(wù)合作
服務(wù)條款
走進(jìn)菁優(yōu)
幫助中心
兼職招聘
意見反饋
深圳市菁優(yōu)智慧教育股份有限公司
粵ICP備10006842號
公網(wǎng)安備44030502001846號
?2010-2024 jyeoo.com 版權(quán)所有
深圳市市場監(jiān)管
主體身份認(rèn)證
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2 |
隱私協(xié)議
第三方SDK
用戶服務(wù)條款
廣播電視節(jié)目制作經(jīng)營許可證
出版物經(jīng)營許可證
網(wǎng)站地圖
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正