已知a、b、c為整數(shù),且滿足3+a2+b2+c2<ab+3b+2c,求(1a+1b+1c)abc的值.
(
1
a
+
1
b
+
1
c
)
abc
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1242引用:2難度:0.5
相似題
-
1.已知代數(shù)式-a2+2a-1,無(wú)論a取任何值,它的值一定是( ?。?/h2>
發(fā)布:2024/12/12 8:0:1組卷:108引用:3難度:0.7 -
2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( ?。?/h2>
發(fā)布:2024/12/16 14:30:3組卷:102引用:3難度:0.9 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( )
發(fā)布:2024/12/23 12:30:2組卷:360引用:9難度:0.4