菁于教,優(yōu)于學
旗下產(chǎn)品
校本題庫
菁優(yōu)備課
開放平臺
菁優(yōu)測評
菁優(yōu)公式
小優(yōu)同學
菁優(yōu)App
數(shù)字備考
充值服務
試卷征集
申請校本題庫
智能組卷
錯題庫
五大核心功能
組卷功能
資源共享
在線作業(yè)
在線測評
試卷加工
游客模式
登錄
試題
試題
試卷
課件
試卷征集
加入會員
操作視頻
初中數(shù)學
小學
數(shù)學
語文
英語
奧數(shù)
科學
道德與法治
初中
數(shù)學
物理
化學
生物
地理
語文
英語
道德與法治
歷史
科學
信息技術(shù)
高中
數(shù)學
物理
化學
生物
地理
語文
英語
政治
歷史
信息
通用
中職
數(shù)學
語文
英語
推薦
章節(jié)挑題
知識點挑題
智能挑題
收藏挑題
試卷中心
匯編專輯
細目表組卷
組卷圈
當前位置:
2022-2023學年福建省龍巖市上杭三中、四中、實驗中學八年級(下)期中數(shù)學試卷
>
試題詳情
在勾股定理的學習過程中,我們已經(jīng)學會了運用如圖圖形,驗證著名的勾股定理,這種根據(jù)圖形直觀推論或驗證數(shù)學規(guī)律和公式的方法,簡稱為“無字證明”.實際上它也可用于驗證數(shù)與代數(shù),圖形與幾何等領(lǐng)域中的許多數(shù)學公式和規(guī)律,它體現(xiàn)的數(shù)學思想是( ?。?br />
A.統(tǒng)計思想
B.分類思想
C.數(shù)形結(jié)合思想
D.函數(shù)思想
【考點】
勾股定理的證明
.
【答案】
C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
當前模式為游客模式,
立即登錄
查看試卷全部內(nèi)容及下載
發(fā)布:2024/5/17 8:0:8
組卷:2524
引用:41
難度:0.8
相似題
1.
如圖所示的“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲.該圖由四個全等的直角三角形和一個小正方形拼成一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=10,大正方形面積為25,則小正方形邊長為( ?。?/h2>
A.
3
B.2
C.
5
D.3
發(fā)布:2024/11/1 11:30:2
組卷:1206
引用:7
難度:0.5
解析
2.
如圖所示的正方形圖案是用4個全等的直角三角形拼成的.已知正方形ABCD的面積為25,正方形EFGH的面積為1,若用x、y分別表示直角三角形的兩直角邊(x>y),下列三個結(jié)論:①x
2
+y
2
=25;②x-y=1;③xy=12.其中正確的是( ?。?/h2>
A.①②③
B.①②
C.①③
D.②③
發(fā)布:2024/11/5 2:30:2
組卷:561
引用:3
難度:0.6
解析
3.
“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形(如圖1)拼成的一個大正方形(如圖2).設(shè)直角三角形較長
直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則圖2中EF的長為( )
A.3
B.4
C.
2
2
D.
3
2
發(fā)布:2024/11/4 1:0:1
組卷:1012
引用:11
難度:0.6
解析
把好題分享給你的好友吧~~
商務合作
服務條款
走進菁優(yōu)
幫助中心
兼職招聘
意見反饋
深圳市菁優(yōu)智慧教育股份有限公司
粵ICP備10006842號
公網(wǎng)安備44030502001846號
?2010-2024 jyeoo.com 版權(quán)所有
深圳市市場監(jiān)管
主體身份認證
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2 |
隱私協(xié)議
第三方SDK
用戶服務條款
廣播電視節(jié)目制作經(jīng)營許可證
出版物經(jīng)營許可證
網(wǎng)站地圖
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正